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CONDUCTIVE THERMAL CONDUCTIVITY OF FIBROUS MATERIALS 

UNDER TRANSIENT GAS FLOW 

N. A. Bozhkov and A. A. Ivanov UDC 536.2.01 

The results are reported from computational studies of the conductive thermal 
conductivity of fibrous materials working at pressures correspnding to transient 
gas flow in pores. 

Energy transfer through a layer of fibrous material is determined by such elementary 
processes as thermal conductivity through a framework and a gas, radiative heat transfer, 
and forced and free convection. The intensity of these processes depends in many ways on 
the external conditions [i]. The region of application of highly porous thermal insulation 
materials is characterized by variation of the pressure from hundreds of atmospheres t~ space 
vacuum, a temperature range from 20 to 2000 K, and different compositions of the gas filling 
the pore. The contribution of one elementary process or another to the overall heat tcansfer 
process will vary, depending on the parameters indicated above. Thus, radiative heat nrans- 
fer is virtually absent at low temperatures and the effect of free convection is negligible 
at pressures P < 100 kPa while its role is decisive at pressures of the order of i00 Mi?a [i]. 
Of great interest is the range of pressures where transient gas flow conditions in a porous 
medium are realized. A number of applications of heat-insulation coatings typically have t~e pres- 
sure-time characteristic shown in Fig. i. In the indicated pressure range heat transf~r in 
the pores is determined by the interaction of gas molecules with each individual fiber (a 
similar situation arises when radiation interacts with the elements of a fibrous frame~ork). 

Analysis of the mathematical models in [I, 2] for heat transfer through the gas and 
framework permit the conclusion that for structures formed by fibers with different diameters, 
lengths, orientations, and thermophysical characteristics (TPC's) the thermal conductivity 
will depend on the anomalies in the fiber distribution according to size, orientation, and 
thermophysical properties as well as on such integrated indices as porosity and average fiber 
diameter. The effect of the distribution on the TPC's can manifest itself most in transient 
pressure regimes. 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 58, No. 5, pp. 714-721 May, 1990. 
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Fig. i. Characteristic time depen- 
dence of the pressure and tempera- 
ture at the frontal surface of 
a heat-protective coating. T w, K; 
P, N/m2; ~, sec. 

Fig. 2. Model structure. Fig. 3. Elementary volume. 

The foregoing discussion calls for a more profound analysis of the methods of calculat- 
ing the conductive thermal conductivity of highly porous fibrous system as applied to the 
indicated pressure range. 

During the development of mathematical models of the conductive thermal conductivity 
of fibrous materials a transition is made, as a rule, from the real structure of the mater- 
ial to some model structure which would be an adequate initial structure and at the same 
time would lend itself to mathematical investigation. In the general case fibrous materials 
can be classified as randomly inhomogeneous media, since the parameters of the constituent 
elements of the structure (diameters, lengths, orientations, thermophysical properties) are 
random quantities. A randomly inhomogeneous fibrous structure with orthogonally arranged 
fibers (Fig. 2) is proposed for modeling fibrous composites; the fibers are assumed to have 
the same distribution with respect to orientations and TPC's. The anisotropy indices a i (i = 

i, 3) of the model structure can be determined on the basis of information about the orienta- 
tion distribution of the fibers [3]: 

ni 
a ~ : - - ,  i :  1 , 3 ,  

113 

where  n i i s  t h e  number  o f  f i b e r s  p e r  u n i t  vo lume o f  t h e  model  s t r u c t u r e ,  o r i e n t e d  a l o n g  t h e  
i - t h  a x i s .  I t  can  be shown t h a t  a i = s 1 6 3  i = 1, . . . ,  3,  and s  i s  t h e  s i z e  a l o n g  t h e  i - t h  
a x i s  o f  an e l e m e n t a r y  vo lume ( F i g .  3) i s o l a t e d  i n  t h e  mode l  s t r u c t u r e .  S i n c e  t h e  a n o m a l i e s  
o f  t h e  s t r u c t u r e  o f  f i b r o u s  c o m p o s i t e s  a f f e c t  t h e i r  m e c h a n i c a l  a s  w e l l  a s  t h e r m o p h y s i c a l  p r o p -  
e r t i e s ,  i t  i s  p o s s i b l e  t o  d e t e r m i n e  t h e  a n i s o t r o p y  i n d i c e s  a i ( i  = 1 . . . . .  3 ) ,  by m e a s u r i n g  
the tensile strnegth of the material along different axes [4]. 

The proposed model structure consists of elementary volumes, each of which is character- 
ized by a random vector of the parameters, 

542 



= (Ai, li, l~, / f r iP i ,  %1, h i, A f r i i  = 1,3), 

where i is the index of the axis; s is the size of the elmentary volume; s is the length 
of the fiber forming the elementary volume; s is the length of the element of the fibrous 
framework in the elementary volume (s 5 s Ai is the size of the cross section of an 
element of the fibrous framework; Pi and Xi are the density and thermal conductivity of an 
element of the fibrous framework; and hfr i and &fri are the height and cross-sectional size 
of the contact zone. The probabilistic characteristics of vector $ depend on the probabilis- 
tic characteristics of the constituent elements (fibers) of the structure. 

For each elementary volume, using the treatments proposed in [i, 2], we can calculate 
the values of the density and thermal conductivity, which are random quantities since they 
depend on vector $. If we consider a macrovolume V n comprising n elementary volumes, however, 
as the number n of the values of the physical characteristics Pn and in of the macrow~lume 
will tend to certain values, which are taken to be the density and thermal conductivi'~y of 
the fibrous material: 

Bearing in mind that 

9,2 n~'-'~ ~ ' ~  

~'" 7/2-2 ~ ~ f . m .  - 

t/ 

P,, : ~ 9 " e.vj In, 
/ = 1  

n 
~ =  % ~  

e.v.j In' 
/ = 1  

where Pe.v.j and Xe.v. j are the density and thermal conductivity of the j-th elementary volume, 

and u s i n g  t h e  law o f  l a r g e  number s  i n  t h e  K h i n c h i n  f o r m  [ 5 ] ,  we o b t a i n :  

p~ ~-e-~MIp jl, 
lZ~OO . V .  

%'~ n~-2--~ M lk e . v . j l .  

Thus, henceforth as the density and thermal conductivity of the fibrous material w~ take 
the values of the mathematical expectations of these quantities, calculated for an el~nentary 
v o l u m e .  

We must note that vector ~ contains three independent parameters s s s which are 
important characteristics of the model structure and the elementary volume. These parameters 
can be determined form the conditions of equality of the apparent density Pa of the fibrous 
material, which can be measured easily, and the apparent density of the model structure. It 
is assumed that the anisotropy indices a I and a 2 of the structure are predetermined. 

9 a = M [ 9  (~(l~, 12, 13 . . . .  ))1, l~ =a~l~, l~=a.,_13. ( 1 )  
e . v  

The solution of problem (i) presumes the existence of a mathematical model of the apparent 
density of the elementary volume, which has the form 

3 3 
A o 

Pe.vV S (/fri [ .Oi) / r ]  [ i '  (2) 
i=1  i ~ I  

In order to calculate the mathematical expectations of the density and thermal conductivity 
of the elementary volume we introduce the space ~ of elementary events, in which we deline 
the vector 6, 

: { ~ I A I  = Xih, [fi : ~ i l ,  [f~ : Z i p ,  Pi ~ Cis,  hfri= ~ir ,  

Afr i  = tim, i : 1, 3; k : 1, K; I = 1, L; p = 1, P ;  

s =  1, S; r = l ,  R; m : l , M } ,  

where S i the number of different materials form which the fibers were made; L and K are the 
numbers of different values of the fiber lengths and diameters; and M and R are the numbers 
of different values of the cross-sectional size and height of the contact zone between fibers. 
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The mathematical expectation of the function of the random vector is determined in a natural 
manner [5]: 

M me.v(~ (~0))1 = ~ %.v!~ (~)); (~0), 

M = (o,)); 

(3) 

Bearing in mind that events associated with framework elements oriented along different axes 
are independent in the aggregate, the probability p(m) of an elementary event is calculated 
in terms of the probabilistic characteristics of fibers as follows: 

3 

P ((~) = ~ P (Pi = ci~) P (A~ = xi~Ip~ = c~)  P ( l ~  = gnlA~ = x ~ ,  
i ~ l  

Pi = c i ~ ) P ( l . ~  = Z ~ p / l f i  -- gu, Ai =x~k, p~=ci~)  X 

X P ( h f r f =  ~i,., AfrO= t i m / I f r i  ~ Zip, l f i  : giz, A~ - -  xih, Pl : cis). 

(4) 

We note that the random quantity s can assume two values: zli = s when a break in a fiber 
does not fall within the elementary volume and z2i = s - [s163163 (z2i < s when the 
volume does contain a fiber break. The probabilities that these values will appear are, re- 
spectively, 

IV 1) P~'-: [ @ ] / i [ @  i] + 1) ' pu':1 /([-~--~ i + " 

To calculate the conductive thermal conductivity of the elementary volume we divide the latter 
with adiabatic and isothermal planes into fragments (Fig. 3), for which we determine the 
values of the thermal resistances: 

RI ==- A 1 @ l ~ -  A 1 ; 

),,~ A~ ( I f r V  Aa) % 51 ([fr V A2) 

R2 ::= A, ~_ l.~ --- A~ ; 
~_A~ ( t f r  r A1) Z A~ ( l f = <  A~) 

Ifr3 13-- / fr3_u h f r  R~ = h~ ) + 
3 ~'3 

2 ~ 1 o 

l p  (Ill.- ~ - -  t lA  1 - -  l,,A~ -'F A1A... - -  3) 

R5 -- hl ~_ A2 _~ 13-- A1A= 
klA1h~ %eA1A2 %phlA~ 

(s) 

The thermal resistance of the elementary volume is calculated on the basis of the circuit 
diagrams of the thermal resistances 

e.v. 
]=I 

The conductive thermal conductivity of the elementary volume is expressed in terms of its 
thermal resistance 

�89 G 
l l l ~ e e . v "  (7) 

E q u a t i o n  ( 5 )  i n c l u d e s  t h e  t h e r m a l  c o n d u c t i v i t y  o f  t h e  p o r e  s p a c e ,  w h i c h  d e p e n d s  on t h e  s t r u c -  
t u r a l  a n o m a l i e s  o f  t h e  m a t e r i a l  a s  w e l l  a s  on t h e  ga s  t e m p e r a t u r e  and  p r e s s u r e .  The t h e r m a l  
c o n d u c t i v i t y  o f  t h e  p o r e  s p a c e  i s  c a l c u l a t e d  e x t e n s i v e l y  a t  p r e s e n t  f r o m  t h e  P r o s o l o v  f o r m u l a  
[1 ,  21 
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(r) (8) 

1 ' 
~P = 4cp/c~ (2 -- A) A0 Pr -~ 1 + - 8) 

(%.:c~) § I .4 

where I~(T) is the thermal conductivity of the gas filling the pores at normal pressure P0 = 

10 5 N/m2; p is the relative pressure, p = P/P0; 6 is the characteristic pore size; Cp and c v 
are the gas heat capacities at constant pressure and at constant volume; A is the acbommoda- 
tion coefficient; A 0 is the mean-free path of gas molecules at normal pressure; and Pr ~s the 
Prandtl criterion. 

The thermal conductivity of the pore space is a function of the characteristic pore size 
8. It seems incorrect to choose the distance between parallel fibers in an ordered s':ructure 
[2] as the characteristic pore size. When the random nature of the structure of the nate- 
rial and the processes occurring in the gas are taken into account it seems more correct to 
take for the characteristic pore size the mathematical expectation of the distance ~ traveled 
by a gas molecule between successive collisions with elements of the framework. This very 
approach is proposed by Bozhkov and Ivanov [6]. Using the relations of the molecular-kinetic 
theory, they obtained an expressed for 6 that holds, however, for a plane fibrous syslem. 
Developing this approach, we consider the problem of determining 8 for a three-dimensional 
randomly inhomogeneous structure. 

We isolate an elementary layer of thickness b in the material. We consider a ramdom 
event A, which consists in a gas molecule undergoing collisions in the interval (y, y + b) after 
traversing a distancy y. The probability P(A) = p of this event depends on b and the struc- 
tural anomalies of the material and not on y. 

Even B consists in a gas molecule traversing a layer (y, y + b) without collision, after 
previously traveling a distance y: 

P(B) - -P (A)~=  1 - - p = q .  

Event C consists in a gas molecule traversing a distance y. In this case P(C) = (P(B)) k, 
where k = [y/b]. Event D consists in the distance between successive collisions lying in 
the interval (y, y + b). Clearly, 

P (D) = P (A) P (C) = (1 - -  q) qh. ( 9 ) 

When we take (9) into account, the probability that a molecular, having traversed the (n - 
10-th layer of the thickness b, undergoes collision in the n-th layer is 

P~ = (I - -  q) q~-~. 

The mathematical expectation of the random quantity n is 

M [ n l = ~  n P ~ =  1 1 
~=z 1--q  p ( 1 0 )  

Suppose that the thickness of an elementary layer is Z~ and the molecule travels along axis 
e 3 of the model structure. In this case 

w h e r e  S1 and S 2 a r e  t h e  a r e a s  o f  t h e  p r o j e c t i o n s  o f  e l e m e n t s  o f  t h e  f i b r o u s  f r a m e w o r k  e f  t h e  
elementary volume and of the elementary volume onto the plane <e x, e2>. 

Bearing in mind that 

S~ = A~ q- A~r~q-  A~/fr~- A1A2, $2 = I~t2, ( 1 2 )  

and taking Eqs. (i0)-(12) into account, we determine the characteristic pore size 8, which 
is equal to the mean free path of a gas molecule between successive collisions with elements 
of the fibrous framework: 

lll~13 
5 = l~M[n] = M[A~ + A l ~ r l +  A2tfr2-A~A~] ~ ( 1 3 )  

while for the isotropic determined structure considered in [2] we have: 
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Fig. 4. Effect of the parameters of the structure of a fibrous 
material on its conductive thermal conductivity: a) effect 
of the structural anisotropy; b) fiber length; c) fiber distri- 
bution according to size. Ifr, W/m'K. 
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2(i -- n) 

where E is the porosity of the material, H = 1 - pfr/pf. This expression differs from the 

functional relation 6(H) = A/3/(I - H), which is given in [2] and was in fact obtained for 
a plane fibrous system. 

We can use Eqs. (i)-(8) and (13), therefore, to calculate the conductive thermal con- 
ductivity of a fibrous material. 

Using some examples, we consider how the values calculated for the conductive thermal 
conductivity by the above method agree with those from the method given in [2]. 

From Eq. (3) and the assumption that the material is isotropic and contains fibers of 
one type and that the fiber diameter is constant and much smaller than the length we rather 
easily obtain an expression with virtually the same form as that given in [2], but the dif- 
ferences in ifr increase as the assumptions adopted in [2] are violated, i.e., as the struc- 
ture becomes more inhomogeneous. An increase in the anisotropy of the structure, therefore, 
results in a lower conductive thermal conductivity, and the decrease may be substantial. Fig- 
ure 4a shows the results of calculations of the dependence of the conductive thermal conduc- 
tivity on the relative pressure P at 1100 K for materials based on quartz fiber with a dif- 
ferent structural anisotroy (density of the material Pfr = 150 kg/m 3, fiber diameter 2.10 -6 
m; the effect of the finite fiber length was not taken into account). 

Since fibers in composites have elongations, which vary over a wide range of values, 
the degree of the effect of the fiber length on lfr is an important problem. From an analy- 
sis of the calculated results it follows that a a shortening of the fibers causes the number 
of defective cells to increase and %fr to decrease. At elongations of more than 200 the fact 
that the fiber length is finite may be disregarded. Figure 4b shows the results of calcula- 
tions of the conductive thermal conuctivity of a quartz ceramic with different fiber lengths 
(T = ii00 K, Pfr = 150 kg/m 3, d = 2"10 -6 , and the structure is isotropic). 

Studies on the effect that the distribution of the fiber size has on the conductive 
thermal conductivity is of the greatest interest. Figure 4c shows the results of calculations 
of lfr for a quartz ceramic (Pfr = 100 kg/m 3) formed by fibers of two types. The first group 
of fibers has the dimensions d I = 2.10 -6 m, s = 100"10-6 m and d= = 20.10 -6 m, s = 
400.10 -6 m. Fibers of different groups have the same probability of appearing. Compari- 
son of %fr, obtained by the method described above (curve 2), with the values of the con- 
ductive thermal conductivity, calculated from the average fiber diameter (dav= ii Dm, 
curve i) reveals a difference that depends on the pressure in the gas medium. 

The above calculated results permit the following conclusions: 

a) disregard of the size distribution of the fibers and the use of a determinate model 
structure can result in substantial errors in the calculation of the conductive thermal con- 
ductivity of fibrous materials in transient pressure regimes; 

b) with a statistical approach to the modeling the effect of a broad spectrum of struc- 
tural anomalies of the material on its thermophysical parameters can be taken into account 
effectively from the same positions. 
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The proposed method can be extended in a natural way to modeling of the optical charac- 
teristics of fibrous composites as well as to modeling of the effect that structural macro- 
defects having their own peculiar distributions with respect to size and physical properties 
have on the physical characteristics. 
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THE THEORY OF THE RHEOLOGICAL PROPERTIES OF DISPERSE SYSTEMS 

A. Yu. Zubarev, E. S. Kats, 
and A. N. Latkin 

UDC 539.37:532.135 

The effective rheological characteristics of stacking identical viscoelastic 
spheres in a matrix of another viscoelastic material are estimated by methods 
of ensemble averaging theory. 

The intensive development of technological processes utilizing stacks of fine particles 
as working bodies requires the development of physicomathematical models that permit relating 
the macrorheological properties of such systems to the singularities of their configuration 
can be given within the framework of the continual approximation, when the disperse mixture 
is considered as a homogeneous continuum whose behavior is described by the methods of the 
mechanics of continuous media. However, even in this case the problem that has still not 
been solved by far arises of calculating the effective charcteristics of a heterogeneous mate- 
rial as a function of the properties of its phases or components and the singularities of 
their arrangement. 

Fig. I. Model of the contacts be- 
tween spheres. Dashes are the 
geometric surfaces of continuation 
of the spheres. 
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